| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 11021167 | 1715033 | 2018 | 37 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												A structured multi-feature representation for recognizing human action and interaction
												
											ترجمه فارسی عنوان
													نمایندگی چند منظوره ساخت یافته برای شناخت عمل و تعامل انسان
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													هوش مصنوعی
												
											چکیده انگلیسی
												Active research has been carried out for human action recognition using 3D human skeleton joints with the release of cost-efficient RGB-D sensors. However, extracting discriminative features from noisy skeleton sequences to effectively distinguish various human action or interaction categories still remains challenging. This paper proposes a structured multi-feature representation for human action and interaction recognition. Specifically, a novel kernel enhanced bag of semantic words (BSW) is designed to represent the dynamic property of skeleton trajectories. By aggregating BSW with the geometric feature, a GBSW representation is constructed for human action recognition. For human interaction recognition where the cooperation of each subject matters, a GBSWC representation is proposed via combining the GBSW feature with a correlation feature which addresses the intrinsic relationship between interactive persons. Experimental results on several human action and interaction datasets demonstrate the superior performances of the proposed features over the state-of-the-art methods.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 318, 27 November 2018, Pages 287-296
											Journal: Neurocomputing - Volume 318, 27 November 2018, Pages 287-296
نویسندگان
												Bangli Liu, Zhaojie Ju, Honghai Liu, 
											