کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
11023365 | 1701303 | 2018 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Forecasting the term structure of option implied volatility: The power of an adaptive method
ترجمه فارسی عنوان
پیش بینی ساختار اصطلاح نوسانات احتمالی گزینه: قدرت یک روش تطبیقی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم انسانی و اجتماعی
اقتصاد، اقتصادسنجی و امور مالی
اقتصاد و اقتصادسنجی
چکیده انگلیسی
We model the term structure of implied volatility (TSIV) with an adaptive approach to improve predictability, which treats dynamic time series models of globally time-varying but locally constant parameters and uses a data-driven procedure to find the local optimal interval. We choose two specifications of the adaptive models: a simple local AR (LAR) model for a univariate implied volatility series and an adaptive dynamic Nelson-Siegel (ADNS) model of three factors, each based on an LAR, to model the cross-section of the TSIV simultaneously with parsimony. Both LAR and ADNS models uniformly outperform more than a dozen alternative models with significance across maturities for 1-20 day forecast horizons. Measured by RMSE and MAE, the forecast errors of the random walk model can be reduced by between 20% and 60% for the 5 to 20 days ahead forecast. In terms of prediction accuracy of future directional changes, the adaptive models achieve an accuracy range of 60%-90%, which strictly dominates the range of 30%-59% of the alternative models.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Empirical Finance - Volume 49, December 2018, Pages 157-177
Journal: Journal of Empirical Finance - Volume 49, December 2018, Pages 157-177
نویسندگان
Ying Chen, Qian Han, Linlin Niu,