کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1131672 955727 2015 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Solving simultaneous route guidance and traffic signal optimization problem using space-phase-time hypernetwork
ترجمه فارسی عنوان
حل مسئله بهینه سازی مسیریابی همزمان و خط مشی بهینه سازی ترافیک با استفاده از شبکه فایو-فاز زمان
کلمات کلیدی
تخصیص ترافیک پویا، کنترل ترافیک شبکه، هدایت مسیر، آرامش لاگرانژی، برنامه نویسی دینامیک، بهینه سازی، مدل سازی شبکه جریان
موضوعات مرتبط
علوم انسانی و اجتماعی علوم تصمیم گیری علوم مدیریت و مطالعات اجرایی
چکیده انگلیسی


• Combine network route guidance and explicit traffic signal control in an optimization model.
• Decompose model into two less computationally complex subproblems through Lagrangian relaxation.
• Define space-phase-time hypernetwork to jointly consider traffic dynamics and signals in network.
• The structure of the relaxed problem is naturally suitable for parallel computing techniques.

This paper addresses the problem of simultaneous route guidance and traffic signal optimization problem (RGTSO) where each vehicle in a traffic network is guided on a path and the traffic signals servicing these vehicles are set to minimize their travel times. The network is modeled as a space-phase-time (SPT) hyper-network to explicitly represent the traffic signal control phases and time-dependent vehicle paths. A Lagrangian-relaxation-based optimization framework is proposed to decouple the RGTSO problem into two subproblems: the Route Guidance (RG) problem for multiple vehicles with given origins and destinations and the Traffic Signal Optimization (TSO) problem. In the RG subproblem, the route of each vehicle is provided subject to time-dependent link capacities imposed by the solution of the TSO problem, while the traffic signal timings are optimized according to the respective link travel demands aggregated from the vehicle trajectories. The dual prices of the RG subproblem indicate search directions for optimization of the traffic signal phase sequences and durations in the TSO subproblem. Both RG and TSO subproblems can be solved using a computationally efficient finite-horizon dynamic programming framework, enhanced by parallel computing techniques. Two numerical experiments demonstrated that the system optimum of the RGTSO problem can be quickly reached with relatively small duality gap for medium-size urban networks.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Transportation Research Part B: Methodological - Volume 81, Part 1, November 2015, Pages 103–130
نویسندگان
, , ,