کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1135906 956125 2010 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Integrating independent component analysis and support vector machine for multivariate process monitoring
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی صنعتی و تولید
پیش نمایش صفحه اول مقاله
Integrating independent component analysis and support vector machine for multivariate process monitoring
چکیده انگلیسی

This study aims to develop an intelligent algorithm by integrating the independent component analysis (ICA) and support vector machine (SVM) for monitoring multivariate processes. For developing a successful SVM-based fault detector, the first step is feature extraction. In real industrial processes, process variables are rarely Gaussian distributed. Thus, this study proposes the application of ICA to extract the hidden information of a non-Gaussian process before conducting SVM. The proposed fault detector will be implemented via two simulated processes and a case study of the Tennessee Eastman process. Results demonstrate that the proposed method possesses superior fault detection when compared to conventional monitoring methods, including PCA, ICA, modified ICA, ICA–PCA and PCA–SVM.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Industrial Engineering - Volume 59, Issue 1, August 2010, Pages 145–156
نویسندگان
, , ,