کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1137307 1489183 2009 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The errors of approximation for feedforward neural networks in the LpLp metric
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
The errors of approximation for feedforward neural networks in the LpLp metric
چکیده انگلیسی

Two classes of feedforward neural networks (FNNs) with one hidden layer are constructed to approximate LpLp integrable functions in this paper. We not only show that the constructed FNNs can approximate any f∈Lp[a,b](1≤p<+∞)f∈Lp[a,b](1≤p<+∞) arbitrarily in the LpLp metric as long as the number of hidden nodes is sufficiently large, but also reveal the relation among the approximation speed, the number of hidden nodes and the smoothness of the target function to be approximated by designing a novel method, which is originated from the Steklov mean function and the modulus of smoothness of ff. The obtained results are helpful in studying the problem of approximation complexity of FNNs in the LpLp metric.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematical and Computer Modelling - Volume 49, Issues 7–8, April 2009, Pages 1563–1572
نویسندگان
, ,