کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1137338 | 1489169 | 2010 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An improved canopy transpiration model and parameter uncertainty analysis by Bayesian approach
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, an improved canopy transpiration (Ec) model that considered the unidirectional influence of soil evaporation on Ec was presented by extending Penman-Monteith model for increasing accuracy of modelling in sub-humid regions, and a Bayesian approach was used to fit the transpiration model to half-hourly transpiration rates for the 14-year-old cherry (Prunus avium L.) orchard collected over 4-month period and probabilistically estimated its parameters and prediction uncertainties. The probabilistic model was extended by adding a normally distributed error term, and the Markov chain Monte Carlo simulation method was used to determine the posterior parameter distributions. Seasonal variation of the Ec was analyzed by the experiments of Sap Flow method in Sijiqing Orchard in Beijing, north of China. The result showed there were larger uncertainties of the parameter and transpiration. The average value of parameters was used for the model, and long series data from simulated value of the model were compared with the measured data, and it showed that the improved transpiration model possessed high accuracy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematical and Computer Modelling - Volume 51, Issues 11â12, June 2010, Pages 1368-1374
Journal: Mathematical and Computer Modelling - Volume 51, Issues 11â12, June 2010, Pages 1368-1374
نویسندگان
Xianyue Li, Peiling Yang, Shumei Ren, Yunkai Li, Tingwu Xu, Liang Ren, Caiyuan Wang,