کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1137482 | 1489172 | 2010 | 13 صفحه PDF | دانلود رایگان |

In this work we propose a high-order and accurate method for solving the one-dimensional nonlinear sine–Gordon equation. The proposed method is based on applying a compact finite difference scheme and the diagonally implicit Runge–Kutta–Nyström (DIRKN) method for spatial and temporal components, respectively. We apply a compact finite difference approximation of fourth order for discretizing the spatial derivative and a fourth-order AA-stable DIRKN method for the time integration of the resulting nonlinear second-order system of ordinary differential equations. The proposed method has fourth-order accuracy in both space and time variables and is unconditionally stable. The results of numerical experiments show that the combination of a compact finite difference approximation of fourth order and a fourth-order AA-stable DIRKN method gives an efficient algorithm for solving the one-dimensional sine–Gordon equation.
Journal: Mathematical and Computer Modelling - Volume 51, Issues 5–6, March 2010, Pages 537–549