کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1138374 | 1489155 | 2011 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Learning SVM with weighted maximum margin criterion for classification of imbalanced data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
As a kernel-based method, whether the selected kernel matches the data determines the performance of support vector machine. Conventional support vector classifiers are not suitable to the imbalanced learning tasks since they tend to classify the instances to the majority class which is the less important class. In this paper, we propose a weighted maximum margin criterion to optimize the data-dependent kernel, which makes the minority class more clustered in the induced feature space. We train support vector classification with the optimal kernel. The experimental results on nine benchmark data sets indicate the effectiveness of the proposed algorithm for imbalanced data classification problems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematical and Computer Modelling - Volume 54, Issues 3–4, August 2011, Pages 1093–1099
Journal: Mathematical and Computer Modelling - Volume 54, Issues 3–4, August 2011, Pages 1093–1099
نویسندگان
Zhuangyuan Zhao, Ping Zhong, Yaohong Zhao,