کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1138412 1489212 2006 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Inductive learning models with missing values
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Inductive learning models with missing values
چکیده انگلیسی

In this paper, a new approach to working with missing attribute values in inductive learning algorithms is introduced. Three fundamental issues are studied: the splitting criterion, the allocation of values to missing attribute values, and the prediction of new observations. The formal definition for the splitting criterion is given. This definition takes into account the missing attribute values and generalizes the classical definition. In relation to the second objective, multiple values are assigned to missing attribute values using a decision theory approach. Each of these multiple values will have an associated confidence and error parameter. The error parameter measures how near or how far the value is from the original value of the attribute. After applying a splitting criterion, a decision tree is obtained (from training sets with or without missing attribute values). This decision tree can be used to predict the class of an observation (with or without missing attribute values). Hence, there are four perspectives. The three perspectives with missing attribute values are studied and experimental results are presented.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematical and Computer Modelling - Volume 44, Issues 9–10, November 2006, Pages 790–806
نویسندگان
, , , ,