کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1138595 1489170 2010 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the existence of extremal positive definite solutions of the nonlinear matrix equation Xr+∑i=1mAi∗XδiAi=I
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
On the existence of extremal positive definite solutions of the nonlinear matrix equation Xr+∑i=1mAi∗XδiAi=I
چکیده انگلیسی

In the present   paper, a necessary condition for the existence of positive definite solutions of the nonlinear matrix equation Xr+∑i=1mAi∗XδiAi=I is derived, where −1<δi<0−1<δi<0, II is an n×nn×n identity matrix, AiAi are n×nn×n nonsingular complex matrices and r,mr,m are positive integers. Based on the Banach fixed point theorem, a sufficient condition for the existence of a unique positive definite solution of this equation is also derived. Iterative methods for obtaining the extremal (maximal–minimal) positive definite solutions of this equation are proposed. Furthermore, the rate of convergence of some proposed algorithms is proved. Finally, numerical examples are given to illustrate the performance and effectiveness of the proposed algorithms.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematical and Computer Modelling - Volume 51, Issues 9–10, May 2010, Pages 1107–1117
نویسندگان
, , ,