کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1138596 1489170 2010 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An efficient algorithm for solving general coupled matrix equations and its application
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
An efficient algorithm for solving general coupled matrix equations and its application
چکیده انگلیسی

The general coupled matrix equations equation(I){A11X1B11+A12X2B12+⋯+A1lXlB1l=C1,A21X1B21+A22X2B22+⋯+A2lXlB2l=C2,⋮Al1X1Bl1+Al2X2Bl2+⋯+AllXlBll=Cl, (including the generalized coupled Sylvester matrix equations as special cases) have nice applications in various branches of control and system theory. In this paper, by extending the idea of conjugate gradient method, we propose an efficient iterative algorithm to solve the general coupled matrix equations (I). When the matrix equations (I) are consistent, for any initial matrix group, a solution group can be obtained within finite iteration steps in the absence of roundoff errors. The least Frobenius norm solution group of the general coupled matrix equations can be derived when a suitable initial matrix group is chosen. We can use the proposed algorithm to find the optimal approximation solution group to a given matrix group (X̂1,X̂2,…,X̂l) in a Frobenius norm within the solution group set of the matrix equations (I). Also several numerical examples are given to illustrate that the algorithm is effective. Furthermore, the application of the proposed algorithm for solving the system of matrix equations {D1XE1=F1,⋮DpXEp=Fp, over (R,S)(R,S)-symmetric and (R,S)(R,S)-skew symmetric matrices is highlighted.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematical and Computer Modelling - Volume 51, Issues 9–10, May 2010, Pages 1118–1134
نویسندگان
, ,