کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1140179 956715 2009 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Maximum likelihood estimation via the extended covariance and combined square-root filters
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Maximum likelihood estimation via the extended covariance and combined square-root filters
چکیده انگلیسی

The method of maximum likelihood is a general method for parameter estimation and is often used in system identification. To implement it, it is necessary to maximize the likelihood function, which is usually done using the gradient approach. It involves the computation of the likelihood gradient with respect to unknown system parameters. For linear stochastic system models this leads to the implementation of the Kalman filter, which is known to be numerically unstable. The aim of this work is to present new efficient algorithms for likelihood gradient evaluation. They are more reliable in practice and improve robustness of computations against roundoff errors. All algorithms are derived in measurement and time updates form. The comparison with the conventional Kalman filter approach and results of numerical experiments are given.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematics and Computers in Simulation - Volume 79, Issue 5, January 2009, Pages 1641–1657
نویسندگان
,