کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1140189 956715 2009 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multivariate exponential smoothing: A Bayesian forecast approach based on simulation
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Multivariate exponential smoothing: A Bayesian forecast approach based on simulation
چکیده انگلیسی

This paper deals with the prediction of time series with correlated errors at each time point using a Bayesian forecast approach based on the multivariate Holt–Winters model. Assuming that each of the univariate time series comes from the univariate Holt–Winters model, all of them sharing a common structure, the multivariate Holt–Winters model can be formulated as a traditional multivariate regression model. This formulation facilitates obtaining the posterior distribution of the model parameters, which is not analytically tractable: simulation is needed. An acceptance sampling procedure is used in order to obtain a sample from this posterior distribution. Using Monte Carlo integration the predictive distribution is then approached. The forecasting performance of this procedure is illustrated using the hotel occupancy time series data from three provinces in Spain.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematics and Computers in Simulation - Volume 79, Issue 5, January 2009, Pages 1761–1769
نویسندگان
, , ,