کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1140388 956724 2010 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Monte Carlo methods for computing the capacitance of the unit cube
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Monte Carlo methods for computing the capacitance of the unit cube
چکیده انگلیسی

It is well known that there is no analytic expression for the electrical capacitance of the unit cube. However, there are several Monte Carlo methods that have been used to numerically estimate this capacitance to high accuracy. These include a Brownian dynamics algorithm [H.-X. Zhou, A. Szabo, J.F. Douglas, J.B. Hubbard, A Brownian dynamics algorithm for calculating the hydrodynamic friction and the electrostatic capacitance of an arbitrarily shaped object, J. Chem. Phys. 100 (5) (1994) 3821–3826] coupled to the “walk on spheres” (WOS) method [M.E. Müller, Some continuous Monte Carlo methods for the Dirichlet problem, Ann. Math. Stat. 27 (1956) 569–589]; the Green’s function first-passage (GFFP) algorithm [J.A. Given, J.B. Hubbard, J.F. Douglas, A first-passage algorithm for the hydrodynamic friction and diffusion-limited reaction rate of macromolecules, J. Chem. Phys. 106 (9) (1997) 3721–3771]; an error-controlling Brownian dynamics algorithm [C.-O. Hwang, M. Mascagni, Capacitance of the unit cube, J. Korean Phys. Soc. 42 (2003) L1–L4]; an extrapolation technique coupled to the WOS method [C.-O. Hwang, Extrapolation technique in the “walk on spheres” method for the capacitance of the unit cube, J. Korean Phys. Soc. 44 (2) (2004) 469–470]; the “walk on planes” (WOP) method [M.L. Mansfield, J.F. Douglas, E.J. Garboczi, Intrinsic viscosity and the electrical polarizability of arbitrarily shaped objects, Phys. Rev. E 64 (6) (2001) 061401:1–061401:16; C.-O. Hwang, M. Mascagni, Electrical capacitance of the unit cube, J. Appl. Phys. 95 (7) (2004) 3798–3802]; and the random “walk on the boundary” (WOB) method [M. Mascagni, N.A. Simonov, The random walk on the boundary method for calculating capacitance, J. Comp. Phys. 195 (2004) 465–473]. Monte Carlo methods are convenient and efficient for problems whose solution includes singularities. In the calculation of the unit cube capacitance, there are edge and corner singularities in the charge density distribution. In this paper, we review the above Monte Carlo methods for computing the electrical capacitance of a cube and compare their effectiveness. We also provide a new result. We will focus our attention particularly on two Monte Carlo methods: WOP [M.L. Mansfield, J.F. Douglas, E.J. Garboczi, Intrinsic viscosity and the electrical polarizability of arbitrarily shaped objects, Phys. Rev. E 64 (6) (2001) 061401:1–061401:16; C.-O. Hwang, M. Mascagni, Electrical capacitance of the unit cube, J. Appl. Phys. 95 (7) (2004) 3798–3802; C.-O. Hwang, T. Won, Edge charge singularity of conductors, J. Korean Phys. Soc. 45 (2004) S551–S553] and the random WOB [M. Mascagni, N.A. Simonov, The random walk on the boundary method for calculating capacitance, J. Comp. Phys. 195 (2004) 465–473] methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematics and Computers in Simulation - Volume 80, Issue 6, February 2010, Pages 1089–1095
نویسندگان
, , ,