| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 1140506 | 1489436 | 2008 | 8 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												A recursive procedure to obtain a class of orthogonal polynomial wavelets
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													سایر رشته های مهندسی
													کنترل و سیستم های مهندسی
												
											پیش نمایش صفحه اول مقاله
												
												چکیده انگلیسی
												In this paper we present a recursive approach to generate complex orthogonal polynomial systems. The systems belong to a class of polynomial wavelets successfully introduced by Skopina [M. Skopina, Orthogonal polynomial Shauder bases in C[â1,1] with optimal growth of degrees, Sb. Math. 192 (3) (2001) 433-454; M. Skopina, Multiresolution analysis of periodic functions, East J. Approx. 3 (1997) 203-224]. Consequently, by using the obtained recursive-type relation, it is possible to generate a great variety of complex polynomial functions which satisfy useful wavelet-like properties. We prove some additional multiscale results concerning these systems. More precisely, we state a practical two-scale relation and the decomposition and reconstruction formulae which determine the multiresolution analysis framework. From the reconstruction formula, we obtain the recursive approach which provides the Skopina's systems. Finally, a numerical example in which explicit complex orthogonal polynomials are found recursively is presented.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematics and Computers in Simulation - Volume 77, Issues 2â3, 7 March 2008, Pages 266-273
											Journal: Mathematics and Computers in Simulation - Volume 77, Issues 2â3, 7 March 2008, Pages 266-273
نویسندگان
												M. Moncayo, R.J. Yáñez,