کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1141405 1489493 2016 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Lifted, projected and subgraph-induced inequalities for the representatives kk-fold coloring polytope
ترجمه فارسی عنوان
نابرابری های زیرگراف القایی برداشته شده و برنامه ریزی شده برای بازنمایی پولی توپ رنگ آمیزی KK برابر
کلمات کلیدی
رنگ آمیزی گراف (KK برابر) . پولی توپ مجموعه پایدار؛ سطح کوچک جواهر؛ نمودار وب؛ کالای واژه نگاری
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات کنترل و بهینه سازی
چکیده انگلیسی

A kk-fold xx-coloring of a graph GG is an assignment of (at least) kk distinct colors from the set {1,2,…,x}{1,2,…,x} to each vertex such that any two adjacent vertices are assigned disjoint sets of colors. The kkth chromatic number of  GG, denoted by  χk(G)χk(G), is the smallest xx such that GG admits a kk-fold xx-coloring. We present an integer linear programming formulation (ILP) to determine χk(G)χk(G) and study the facial structure of the corresponding polytope Pk(G)Pk(G). We show facets that  Pk+1(G)Pk+1(G) inherits from Pk(G)Pk(G) and show how to lift facets from Pk(G)Pk(G) to Pk+ℓ(G)Pk+ℓ(G). We project facets of P1(G∘Kk)P1(G∘Kk) into facets of Pk(G)Pk(G), where G∘KkG∘Kk is the lexicographic product of GG by a clique with kk vertices. In both cases, we can obtain facet-defining inequalities from many of those known for the 11-fold coloring polytope. We also derive facets of Pk(G)Pk(G) from facets of stable set polytopes of subgraphs of GG. In addition, we present classes of facet-defining inequalities based on strongly χkχk-critical webs and antiwebs, which extend and generalize known results for 11-fold coloring. We introduce this criticality concept and characterize the webs and antiwebs having such a property.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Optimization - Volume 21, August 2016, Pages 131–156
نویسندگان
, , ,