کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1141440 1489502 2014 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sherali–Adams relaxations of graph isomorphism polytopes
ترجمه فارسی عنوان
شلالی آدامز آرامش چندگانه ایسرمورفیسم گراف
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات کنترل و بهینه سازی
چکیده انگلیسی

We investigate the Sherali–Adams lift & project hierarchy applied to a graph isomorphism polytope whose integer points encode the isomorphisms between two graphs. In particular, the Sherali–Adams relaxations characterize a new vertex classification algorithm for graph isomorphism, which we call the generalized vertex classification algorithm  . This algorithm generalizes the classic vertex classification algorithm and generalizes the work of Tinhofer on polyhedral methods for graph automorphism testing. We establish that the Sherali–Adams lift & project hierarchy when applied to a graph isomorphism polytope of a graph with nn vertices needs Ω(n)Ω(n) iterations in the worst case before converging to the convex hull of integer points. We also show that this generalized vertex classification algorithm is also strongly related to the well-known Weisfeiler–Lehman algorithm, which we show can also be characterized in terms of the Sherali–Adams relaxations of a semi-algebraic set whose integer points encode graph isomorphisms.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Optimization - Volume 12, May 2014, Pages 73–97
نویسندگان
,