کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1141905 | 957102 | 2007 | 19 صفحه PDF | دانلود رایگان |

We investigate a scheme, called pairing, for generating new valid inequalities for mixed integer programs by taking pairwise combinations of existing valid inequalities. The pairing scheme essentially produces a split cut corresponding to a specific disjunction, and can also be derived through the mixed integer rounding procedure. The scheme is in general sequence-dependent and therefore leads to an exponential number of inequalities. For some important cases, we identify combination sequences that lead to a manageable set of non-dominated inequalities. We illustrate the framework for some deterministic and stochastic integer programs and we present computational results showing the efficiency of adding the new generated inequalities as cuts.
Journal: Discrete Optimization - Volume 4, Issue 1, 1 March 2007, Pages 21–39