کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1143721 1489611 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
High-frequency Compensation of Dynamic Distortions in Micromachining Force Measurements
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی صنعتی و تولید
پیش نمایش صفحه اول مقاله
High-frequency Compensation of Dynamic Distortions in Micromachining Force Measurements
چکیده انگلیسی

In this paper, we present a comprehensive technique to obtain accurate three-dimensional (3D) micromachining forces for frequency bandwidths up to 25 kHz. The capability to precisely measure cutting forces is central to gaining fundamental understanding on micromachining mechanics and dynamics. Multi-axis dynamometers are used to measure 3D machining forces. Forces experienced during micromachining involve very high frequencies due to the ultra-high spindle speeds used during the process. However, the specified bandwidths of the dynamometers do not meet high frequency requirements of micromachining forces; this limitation stems from the structural-dynamics response of the dynamometers. Therefore, it is important to develop approaches to compensate for the distortions arising from the dynamic effects of the dynamometer's structure in order to accurately measure micromachining forces. This paper presents a fully 3D compensation approach to enable accurate determination of 3D micromachining forces within a wide frequency range. The presented approach involves: (1) accurate identification of 3D force measurement characteristics of the dynamometer in the form of 3x3 force-to-force frequency response functions (F2F-FRFs) matrix within a 25 kHz bandwidth, (2) design of an optimal inverse filter for post-processing the measured force data to remove the influence of structural dynamics of the dynamometer; and (3) validation of the compensation approach through impact testing where the actual applied force data acquired by the reference force sensor is compared with the corrected dynamometer measurements. Subsequently, the presented approach is demonstrated by obtaining 3D micromachining forces during micromilling of a brass workpiece. It is concluded that the presented approach is effective in high-frequency correction of dynamometer measurements for accurate measurement of 3D micromachining forces within the 0- 25 kHz frequency range.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Manufacturing - Volume 1, 2015, Pages 534-545