کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
11443 741 2006 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD
چکیده انگلیسی

Better materials are needed to promote bone growth. For this reason, the present study created nanometer crystalline hydroxyapatite (HA) and amorphous calcium phosphate compacts functionalized with the arginine-glycine-aspartic acid (RGD) peptide sequence. Crystalline HA and amorphous calcium phosphate nanoparticles were synthesized by a wet chemical process followed by a hydrothermal treatment for 2 h at 200 °C and 70 °C, respectively. Resulting particles were then pressed into compacts. For the preparation of conventional HA particles (or those with micron diameters), the aforementioned pressed compacts were sintered at 1100 °C for 2 h. Peptide functionalization was conducted by means of a three step reaction procedure: silanization with 3-aminopropyltriethoxysilane (APTES), cross-linking with N-succinimidyl-3-maleimido propionate (SMP), and finally peptide immobilization. The three step reaction procedure was characterized by a novel 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde (CBQCA) fluorescence technique. For all materials, results showed that the immobilization of the cell adhesive RGD sequence increased osteoblast (bone-forming cell) adhesion compared to those non-functionalized and those functionalized with the noncell adhesive control peptide (RGE) after 4 h. However, surprisingly, results also showed that the adhesion of osteoblasts on non-functionalized amorphous nanoparticulate calcium phosphate was similar to conventional HA functionalized with RGD. Osteoblast adhesion on nanocrystalline HA (unfunctionalized and functionalized with RGD) was below that of the respective functionalized amorphous calcium phosphate but above that of the respective functionalized conventional HA. In this manner, results of this study suggest that decreasing the particulate size into the nanometer regime and reducing crystallinity of calcium phosphate based materials may promote osteoblast adhesion to the same degree as the well-established techniques of functionalizing conventional HA with RGD.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomaterials - Volume 27, Issue 14, May 2006, Pages 2798–2805
نویسندگان
, , ,