کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1144994 | 957444 | 2010 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Bayesian principal component analysis with mixture priors
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A central issue in principal component analysis (PCA) is that of choosing the appropriate number of principal components to be retained. Bishop (1999a) suggested a Bayesian approach for PCA for determining the effective dimensionality automatically on the basis of the probabilistic latent variable model. This paper extends this approach by using mixture priors, in that the choice dimensionality and estimation of principal components are done simultaneously via MCMC algorithm. Also, the proposed method provides a probabilistic measure of uncertainty on PCA, yielding posterior probabilities of all possible cases of principal components.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Korean Statistical Society - Volume 39, Issue 3, September 2010, Pages 387–396
Journal: Journal of the Korean Statistical Society - Volume 39, Issue 3, September 2010, Pages 387–396
نویسندگان
Hyun Sook Oh, Dai-Gyoung Kim,