کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1145386 1489662 2015 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Spatial composite likelihood inference using local C-vines
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Spatial composite likelihood inference using local C-vines
چکیده انگلیسی
We present a vine copula based composite likelihood approach to model spatial dependencies, which allows to perform prediction at arbitrary locations. It combines established methods to model (spatial) dependencies. On the one hand spatial differences between the variable locations are utilized to model the degree of spatial dependence. On the other hand the flexible class of C-vine copulas are used to model the spatial dependency structure locally. These local C-vine copulas are parametrized jointly, exploiting a relationship between the copula parameters and the corresponding spatial distances and elevation differences, and are combined in a composite likelihood approach. This spatial local C-vine composite likelihood (S-LCVCL) method benefits from the fact that it is able to capture non-Gaussian dependency structures. The development and validation of the new methodology is illustrated using a data set of daily mean temperatures observed at 73 observation stations spread over Germany. For validation continuous ranked probability scores are utilized. Comparison with another vine copula based approach and a Gaussian approach for spatial dependency modeling shows a preference for vine copula based (spatial) dependency structures.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 138, June 2015, Pages 74-88
نویسندگان
, , ,