کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1145525 1489669 2014 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Large dimensional analysis and optimization of robust shrinkage covariance matrix estimators
ترجمه فارسی عنوان
تجزیه و تحلیل بزرگ بعدی و بهینه سازی برآوردگرهای ماتریس کوواریانس قوی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
چکیده انگلیسی

This article studies two regularized robust estimators of scatter matrices proposed (and proved to be well defined) in parallel in Chen et al. (2011) and Pascal et al. (2013), based on Tyler’s robust M-estimator (Tyler, 1987) and on Ledoit and Wolf’s shrinkage covariance matrix estimator (Ledoit and Wolf, 2004). These hybrid estimators have the advantage of conveying (i) robustness to outliers or impulsive samples and (ii) small sample size adequacy to the classical sample covariance matrix estimator. We consider here the case of i.i.d. elliptical zero mean samples in the regime where both sample and population sizes are large. We demonstrate that, under this setting, the estimators under study asymptotically behave similar to well-understood random matrix models. This characterization allows us to derive optimal shrinkage strategies to estimate the population scatter matrix, improving significantly upon the empirical shrinkage method proposed in Chen et al. (2011).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 131, October 2014, Pages 99–120
نویسندگان
, ,