کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1145612 1489664 2015 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bayesian structure learning in graphical models
ترجمه فارسی عنوان
یادگیری ساختار بیزی در مدل های گرافیکی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
چکیده انگلیسی

We consider the problem of estimating a sparse precision matrix of a multivariate Gaussian distribution, where the dimension pp may be large. Gaussian graphical models provide an important tool in describing conditional independence through presence or absence of edges in the underlying graph. A popular non-Bayesian method of estimating a graphical structure is given by the graphical lasso. In this paper, we consider a Bayesian approach to the problem. We use priors which put a mixture of a point mass at zero and certain absolutely continuous distribution on off-diagonal elements of the precision matrix. Hence the resulting posterior distribution can be used for graphical structure learning. The posterior convergence rate of the precision matrix is obtained and is shown to match the oracle rate. The posterior distribution on the model space is extremely cumbersome to compute using the commonly used reversible jump Markov chain Monte Carlo methods. However, the posterior mode in each graph can be easily identified as the graphical lasso restricted to each model. We propose a fast computational method for approximating the posterior probabilities of various graphs using the Laplace approximation approach by expanding the posterior density around the posterior mode. We also provide estimates of the accuracy in the approximation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 136, April 2015, Pages 147–162
نویسندگان
, ,