کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1145778 1489679 2013 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index
چکیده انگلیسی


• A robust and asymptotically unbiased estimator for the Pareto tail index is proposed.
• Consistency and asymptotic normality is established.
• Simulations and comparison to alternatives are proposed.

We introduce a robust and asymptotically unbiased estimator for the tail index of Pareto-type distributions. The estimator is obtained by fitting the extended Pareto distribution to the relative excesses over a high threshold with the minimum density power divergence criterion. Consistency and asymptotic normality of the estimator is established under a second order condition on the distribution underlying the data, and for intermediate sequences of upper order statistics. The finite sample properties of the proposed estimator and some alternatives from the extreme value literature are evaluated by a small simulation experiment involving both uncontaminated and contaminated samples.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 121, October 2013, Pages 70–86
نویسندگان
, , ,