کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1145810 1489678 2013 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Minimax rates of convergence for Wasserstein deconvolution with supersmooth errors in any dimension
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Minimax rates of convergence for Wasserstein deconvolution with supersmooth errors in any dimension
چکیده انگلیسی

The subject of this paper is the estimation of a probability measure on RdRd from the data observed with an additive noise, under the Wasserstein metric of order pp (with p≥1p≥1). We assume that the distribution of the errors is known and belongs to a class of supersmooth distributions, and we give optimal rates of convergence for the Wasserstein metric of order pp. In particular, we show how to use the existing lower bounds for the estimation of the cumulative distribution function in dimension one to find lower bounds for the Wasserstein deconvolution in any dimension.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 122, November 2013, Pages 278–291
نویسندگان
, ,