کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1145833 | 1489680 | 2013 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Robust estimation of location and scatter by pruning the minimum spanning tree
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز عددی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
One of the most essential topics in robust statistics is the robust estimation of location and covariance. Many popular robust (location and scatter) estimators such as Fast-MCD, MVE, and MZE require at least a convex distribution of the underlying data. In the case of non-convex data distributions these approaches may lead to a suboptimal result caused by the application of Mahalanobis distances with respect to location and covariance of a suitably chosen subsample of the data-implying a convex structure. The approach presented here fixes this drawback using Euclidean distances. The data set is treated as a complete network and the minimum spanning tree (MST) for this data set is calculated. Based on the MST a subset of relevant points (thought of as an “outlier-free” subsample of minimum size) is determined which can then be used for calculating data characteristics. It is shown, that the approach has a maximum breakdown point. Additionally, a simulation study provides insights in the approach's behaviour with respect to increasing dimension and size.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 120, September 2013, Pages 173-184
Journal: Journal of Multivariate Analysis - Volume 120, September 2013, Pages 173-184
نویسندگان
Thomas Kirschstein, Steffen Liebscher, Claudia Becker,