کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1145892 1489683 2013 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bayesian regression based on principal components for high-dimensional data
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Bayesian regression based on principal components for high-dimensional data
چکیده انگلیسی

The Gaussian sequence model can be obtained from the high-dimensional regression model through principal component analysis. It is shown that the Gaussian sequence model is equivalent to the original high-dimensional regression model in terms of prediction. Under a sparsity condition, we investigate the posterior consistency and convergence rates of the Gaussian sequence model. In particular, we examine two different modeling strategies: Bayesian inference with and without covariate selection. For Bayesian inferences without covariate selection, we obtain the consistency results of the estimators and posteriors with normal priors with constant and decreasing variances, and the James–Stein estimator; for Bayesian inference with covariate selection, we obtain convergence rates of Bayesian model averaging (BMA) and median probability model (MPM) estimators, and the posterior with variable selection prior. Based on these results, we conclude that variable selection is essential in high-dimensional Bayesian regression. A simulation study also confirms the conclusion. The methodologies are applied to a climate prediction problem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 117, May 2013, Pages 175–192
نویسندگان
, ,