کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1146039 957493 2011 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Monotonicity properties of multivariate distribution and survival functions — With an application to Lévy-frailty copulas
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Monotonicity properties of multivariate distribution and survival functions — With an application to Lévy-frailty copulas
چکیده انگلیسی

The monotonicity properties of multivariate distribution functions are definitely more complicated than in the univariate case. We show that they fit perfectly well into the general theory of completely monotone and alternating functions on abelian semigroups. This allows us to prove a correspondence theorem which generalizes the classical version in two respects: the function in question may be defined on rather arbitrary product sets in R¯n, and it need not be grounded, i.e. disappear at the lower-left boundary.In 2009 a greatly interesting class of copulas was discovered by Mai and Scherer (cf. Mai and Scherer (2009) [4]), connecting in a very surprising way complete monotonicity with respect to the maximum operation on R+n and with respect to ordinary addition on N0N0. Based on the preceding results, we give another proof of this result.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 102, Issue 3, March 2011, Pages 393–404
نویسندگان
,