کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1146127 1489694 2012 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On sample eigenvalues in a generalized spiked population model
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
On sample eigenvalues in a generalized spiked population model
چکیده انگلیسی

In the spiked population model introduced by Johnstone (2001) [11], the population covariance matrix has all its eigenvalues equal to unit except for a few fixed eigenvalues (spikes). The question is to quantify the effect of the perturbation caused by the spike eigenvalues. Baik and Silverstein (2006) [5] establishes the almost sure limits of the extreme sample eigenvalues associated to the spike eigenvalues when the population and the sample sizes become large. In a recent work Bai and Yao (2008) [4], we have provided the limiting distributions for these extreme sample eigenvalues. In this paper, we extend this theory to a generalized spiked population model where the base population covariance matrix is arbitrary, instead of the identity matrix as in Johnstone’s case. As the limiting spectral distribution is arbitrary here, new mathematical tools, different from those in Baik and Silverstein (2006) [5], are introduced for establishing the almost sure convergence of the sample eigenvalues generated by the spikes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 106, April 2012, Pages 167–177
نویسندگان
, ,