کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1146154 957497 2010 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Spline-based sieve maximum likelihood estimation in the partly linear model under monotonicity constraints
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Spline-based sieve maximum likelihood estimation in the partly linear model under monotonicity constraints
چکیده انگلیسی

We study a spline-based likelihood method for the partly linear model with monotonicity constraints. We use monotone BB-splines to approximate the monotone nonparametric function and apply the generalized Rosen algorithm to compute the estimators jointly. We show that the spline estimator of the nonparametric component achieves the possible optimal rate of convergence under the smooth assumption and that the estimator of the regression parameter is asymptotically normal and efficient. Moreover, a spline-based semiparametric likelihood ratio test is established to make inference of the regression parameter. Also an observed profile information method to consistently estimate the standard error of the spline estimator of the regression parameter is proposed. A simulation study is conducted to evaluate the finite sample performance of the proposed method. The method is illustrated by an air pollution study.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 101, Issue 10, November 2010, Pages 2528–2542
نویسندگان
,