کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1146259 957501 2012 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An adaptive estimator of the memory parameter and the goodness-of-fit test using a multidimensional increment ratio statistic
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
An adaptive estimator of the memory parameter and the goodness-of-fit test using a multidimensional increment ratio statistic
چکیده انگلیسی

The increment ratio (IR) statistic was first defined and studied in Surgailis et al. (2007) [19] for estimating the memory parameter either of a stationary or an increment stationary Gaussian process. Here three extensions are proposed in the case of stationary processes. First, a multidimensional central limit theorem is established for a vector composed by several IR statistics. Second, a goodness-of-fit χ2χ2-type test can be deduced from this theorem. Finally, this theorem allows to construct adaptive versions of the estimator and the test which are studied in a general semiparametric frame. The adaptive estimator of the long-memory parameter is proved to follow an oracle property. Simulations attest to the interesting accuracies and robustness of the estimator and the test, even in the non Gaussian case.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 105, Issue 1, February 2012, Pages 222–240
نویسندگان
, ,