کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1146261 957501 2012 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Data sharpening methods in multivariate local quadratic regression
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Data sharpening methods in multivariate local quadratic regression
چکیده انگلیسی

This paper is concerned with the conditional bias and variance of local quadratic regression to the multivariate predictor variables. Data sharpening methods of nonparametric regression were first proposed by Choi, Hall, Roussion. Recently, a data sharpening estimator of local linear regression was discussed by Naito and Yoshizaki. In this paper, to improve mainly the fitting precision, we extend their results on the asymptotic bias and variance. Using the data sharpening estimator of multivariate local quadratic regression, we are able to derive higher fitting precision. In particular, our approach is simple to implement, since it has an explicit form, and is convenient when analyzing the asymptotic conditional bias and variance of the estimator at the interior and boundary points of the support of the density function.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 105, Issue 1, February 2012, Pages 258–275
نویسندگان
, , ,