کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1146451 957511 2011 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optimal vector quantization in terms of Wasserstein distance
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Optimal vector quantization in terms of Wasserstein distance
چکیده انگلیسی

The optimal quantizer in memory-size constrained vector quantization induces a quantization error which is equal to a Wasserstein distortion. However, for the optimal (Shannon-)entropy constrained quantization error a proof for a similar identity is still missing. Relying on principal results of the optimal mass transportation theory, we will prove that the optimal quantization error is equal to a Wasserstein distance. Since we will state the quantization problem in a very general setting, our approach includes the Rényi-αα-entropy as a complexity constraint, which includes the special case of (Shannon-)entropy constrained (α=1)(α=1) and memory-size constrained (α=0)(α=0) quantization. Additionally, we will derive for certain distance functions codecell convexity for quantizers with a finite codebook. Using other methods, this regularity in codecell geometry has already been proved earlier by György and Linder (2002, 2003) [11] and [12].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 102, Issue 8, September 2011, Pages 1225–1239
نویسندگان
,