کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1146466 957512 2010 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sieve maximum likelihood estimation for doubly semiparametric zero-inflated Poisson models
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Sieve maximum likelihood estimation for doubly semiparametric zero-inflated Poisson models
چکیده انگلیسی

For nonnegative measurements such as income or sick days, zero counts often have special status. Furthermore, the incidence of zero counts is often greater than expected for the Poisson model. This article considers a doubly semiparametric zero-inflated Poisson model to fit data of this type, which assumes two partially linear link functions in both the mean of the Poisson component and the probability of zero. We study a sieve maximum likelihood estimator for both the regression parameters and the nonparametric functions. We show, under routine conditions, that the estimators are strongly consistent. Moreover, the parameter estimators are asymptotically normal and first order efficient, while the nonparametric components achieve the optimal convergence rates. Simulation studies suggest that the extra flexibility inherent from the doubly semiparametric model is gained with little loss in statistical efficiency. We also illustrate our approach with a dataset from a public health study.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 101, Issue 9, October 2010, Pages 2026–2038
نویسندگان
, , ,