کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1146540 957516 2011 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bayesian MAP model selection of chain event graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Bayesian MAP model selection of chain event graphs
چکیده انگلیسی

Chain event graphs are graphical models that while retaining most of the structural advantages of Bayesian networks for model interrogation, propagation and learning, more naturally encode asymmetric state spaces and the order in which events happen than Bayesian networks do. In addition, the class of models that can be represented by chain event graphs for a finite set of discrete variables is a strict superset of the class that can be described by Bayesian networks. In this paper we demonstrate how with complete sampling, conjugate closed form model selection based on product Dirichlet priors is possible, and prove that suitable homogeneity assumptions characterise the product Dirichlet prior on this class of models. We demonstrate our techniques using two educational examples.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 102, Issue 7, August 2011, Pages 1152–1165
نویسندگان
, ,