کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1146599 | 957520 | 2011 | 15 صفحه PDF | دانلود رایگان |

It is natural to assume that a missing-data mechanism depends on latent variables in the analysis of incomplete data in latent variate modeling because latent variables are error-free and represent key notions investigated by applied researchers. Unfortunately, the missing-data mechanism is then not missing at random (NMAR). In this article, a new estimation method is proposed, which leads to consistent and asymptotically normal estimators for all parameters in a linear latent variate model, where the missing mechanism depends on the latent variables and no concrete functional form for the missing-data mechanism is used in estimation. The method to be proposed is a type of multi-sample analysis with or without mean structures, and hence, it is easy to implement. Complete-case analysis is shown to produce consistent estimators for some important parameters in the model.
Journal: Journal of Multivariate Analysis - Volume 102, Issue 9, October 2011, Pages 1241–1255