کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1146617 957521 2010 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Robust tests based on dual divergence estimators and saddlepoint approximations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Robust tests based on dual divergence estimators and saddlepoint approximations
چکیده انگلیسی

This paper is devoted to robust hypothesis testing based on saddlepoint approximations in the framework of general parametric models. As is known, two main problems can arise when using classical tests. First, the models are approximations of reality and slight deviations from them can lead to unreliable results when using classical tests based on these models. Then, even if a model is correctly chosen, the classical tests are based on first order asymptotic theory. This can lead to inaccurate pp-values when the sample size is moderate or small. To overcome these problems, robust tests based on dual divergence estimators and saddlepoint approximations, with good performances in small samples, are proposed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 101, Issue 5, May 2010, Pages 1143–1155
نویسندگان
, ,