کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1146842 | 957533 | 2009 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
No eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز عددی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider a class of matrices of the form Cn=(1/N)An1/2XnBnXnâÃAn1/2, where Xn is an nÃN matrix consisting of i.i.d. standardized complex entries, An1/2 is a nonnegative definite square root of the nonnegative definite Hermitian matrix An, and Bn is diagonal with nonnegative diagonal entries. Under the assumption that the distributions of the eigenvalues of An and Bn converge to proper probability distributions as nNâcâ(0,â), the empirical spectral distribution of Cn converges a.s. to a non-random limit. We show that, under appropriate conditions on the eigenvalues of An and Bn, with probability 1, there will be no eigenvalues in any closed interval outside the support of the limiting distribution, for sufficiently large n. The problem is motivated by applications in spatio-temporal statistics and wireless communications.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 100, Issue 1, January 2009, Pages 37-57
Journal: Journal of Multivariate Analysis - Volume 100, Issue 1, January 2009, Pages 37-57
نویسندگان
Debashis Paul, Jack W. Silverstein,