کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1146930 957538 2006 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Semi-parametric estimation of partially linear single-index models
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Semi-parametric estimation of partially linear single-index models
چکیده انگلیسی

One of the most difficult problems in applications of semi-parametric partially linear single-index models (PLSIM) is the choice of pilot estimators and complexity parameters which may result in radically different estimators. Pilot estimators are often assumed to be root-n consistent, although they are not given in a constructible way. Complexity parameters, such as a smoothing bandwidth are constrained to a certain speed, which is rarely determinable in practical situations.In this paper, efficient, constructible and practicable estimators of PLSIMs are designed with applications to time series. The proposed technique answers two questions from Carroll et al. [Generalized partially linear single-index models, J. Amer. Statist. Assoc. 92 (1997) 477–489]: no root-n pilot estimator for the single-index part of the model is needed and complexity parameters can be selected at the optimal smoothing rate. The asymptotic distribution is derived and the corresponding algorithm is easily implemented. Examples from real data sets (credit-scoring and environmental statistics) illustrate the technique and the proposed methodology of minimum average variance estimation (MAVE).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 97, Issue 5, May 2006, Pages 1162-1184