کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1146957 957540 2011 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multiple imputations and the missing censoring indicator model
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Multiple imputations and the missing censoring indicator model
چکیده انگلیسی

Semiparametric random censorship (SRC) models (Dikta, 1998) provide an attractive framework for estimating survival functions when censoring indicators are fully or partially available. When there are missing censoring indicators (MCIs), the SRC approach employs a model-based estimate of the conditional expectation of the censoring indicator given the observed time, where the model parameters are estimated using only the complete cases. The multiple imputations approach, on the other hand, utilizes this model-based estimate to impute the missing censoring indicators and form several completed data sets. The Kaplan–Meier and SRC estimators based on the several completed data sets are averaged to arrive at the multiple imputations Kaplan–Meier (MIKM) and the multiple imputations SRC (MISRC) estimators. While the MIKM estimator is asymptotically as efficient as or less efficient than the standard SRC-based estimator that involves no imputations, here we investigate the performance of the MISRC estimator and prove that it attains the benchmark variance set by the SRC-based estimator. We also present numerical results comparing the performances of the estimators under several misspecified models for the above mentioned conditional expectation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 102, Issue 1, January 2011, Pages 105–117
نویسندگان
,