کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1146984 957541 2009 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Lévy-frailty copulas
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Lévy-frailty copulas
چکیده انگلیسی

A parametric family of n-dimensional extreme-value copulas of Marshall–Olkin type is introduced. Members of this class arise as survival copulas in Lévy-frailty models. The underlying probabilistic construction introduces dependence to initially independent exponential random variables by means of first-passage times of a Lévy subordinator. Jumps of the subordinator correspond to a singular component of the copula. Additionally, a characterization of completely monotone sequences via the introduced family of copulas is derived. An alternative characterization is given by Hausdorff’s moment problem in terms of random variables with compact support. The resulting correspondence between random variables, Lévy subordinators, and copulas is studied and illustrated with several examples. Finally, it is used to provide a general methodology for sampling the copula in many cases. The new class is shown to share some properties with Archimedean copulas regarding construction and analytical form. Finally, the parametric form allows us to compute different measures of dependence and the Pickands representation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 100, Issue 7, August 2009, Pages 1567–1585
نویسندگان
, ,