کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1147103 957550 2009 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nonconcave penalized inverse regression in single-index models with high dimensional predictors
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Nonconcave penalized inverse regression in single-index models with high dimensional predictors
چکیده انگلیسی

In this paper we aim to estimate the direction in general single-index models and to select important variables simultaneously when a diverging number of predictors are involved in regressions. Towards this end, we propose the nonconcave penalized inverse regression method. Specifically, the resulting estimation with the SCAD penalty enjoys an oracle property in semi-parametric models even when the dimension, pnpn, of predictors goes to infinity. Under regularity conditions we also achieve the asymptotic normality when the dimension of predictor vector goes to infinity at the rate of pn=o(n1/3)pn=o(n1/3) where nn is sample size, which enables us to construct confidence interval/region for the estimated index. The asymptotic results are augmented by simulations, and illustrated by analysis of an air pollution dataset.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 100, Issue 5, May 2009, Pages 862–875
نویسندگان
, ,