کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1147110 | 957550 | 2009 | 11 صفحه PDF | دانلود رایگان |

Let X1,…,XnX1,…,Xn be independent exponential random variables with respective hazard rates λ1,…,λnλ1,…,λn, and let Y1,…,YnY1,…,Yn be independent exponential random variables with common hazard rate λλ. This paper proves that X2:nX2:n, the second order statistic of X1,…,XnX1,…,Xn, is larger than Y2:nY2:n, the second order statistic of Y1,…,YnY1,…,Yn, in terms of the likelihood ratio order if and only if λ≥12n−1(2Λ1+Λ3−Λ1Λ2Λ12−Λ2) with Λk=∑i=1nλik,k=1,2,3. Also, it is shown that X2:nX2:n is smaller than Y2:nY2:n in terms of the likelihood ratio order if and only if λ≤∑i=1nλi−max1≤i≤nλin−1. These results form nice extensions of those on the hazard rate order in Paˇltaˇnea [E. Paˇltaˇnea, On the comparison in hazard rate ordering of fail-safe systems, Journal of Statistical Planning and Inference 138 (2008) 1993–1997].
Journal: Journal of Multivariate Analysis - Volume 100, Issue 5, May 2009, Pages 952–962