کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1147135 957553 2007 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the convergence of Newton's method when estimating higher dimensional parameters
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
On the convergence of Newton's method when estimating higher dimensional parameters
چکیده انگلیسی

In this paper, we consider the estimation of a parameter of interest where the estimator is one of the possibly several solutions of a set of nonlinear empirical equations. Since Newton's method is often used in such a setting to obtain a solution, it is important to know whether the so obtained iteration converges to the locally unique consistent root to the aforementioned parameter of interest. Under some conditions, we show that this is eventually the case when starting the iteration from within a ball about the true parameter whose size does not depend on n. Any preliminary almost surely consistent estimate will eventually lie in such a ball and therefore provides a suitable starting point for large enough n. As examples, we will apply our results in the context of M-estimates, kernel density estimates, as well as minimum distance estimates.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 98, Issue 5, May 2007, Pages 916-931