کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1147196 | 957558 | 2008 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Image classification based on Markov random field models with Jeffreys divergence
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز عددی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper considers image classification based on a Markov random field (MRF), where the random field proposed here adopts Jeffreys divergence between category-specific probability densities. The classification method based on the proposed MRF is shown to be an extension of Switzer's soothing method, which is applied in remote sensing and geospatial communities. Furthermore, the exact error rates due to the proposed and Switzer's methods are obtained under the simple setup, and several properties are derived. Our method is applied to a benchmark data set of image classification, and exhibits a good performance in comparison with conventional methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 97, Issue 9, October 2006, Pages 1997-2008
Journal: Journal of Multivariate Analysis - Volume 97, Issue 9, October 2006, Pages 1997-2008