کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1147197 957558 2009 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Non-parametric kernel regression for multinomial data
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Non-parametric kernel regression for multinomial data
چکیده انگلیسی

This paper presents a kernel smoothing method for multinomial regression. A class of estimators of the regression functions is constructed by minimizing a localized power-divergence measure. These estimators include the bandwidth and a single parameter originating in the power-divergence measure as smoothing parameters. An asymptotic theory for the estimators is developed and the bias-adjusted estimators are obtained. A data-based algorithm for selecting the smoothing parameters is also proposed. Simulation results reveal that the proposed algorithm works efficiently.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 97, Issue 9, October 2006, Pages 2009-2022