کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1147201 | 957558 | 2006 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Minimum distance classification rules for high dimensional data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز عددی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this article, the problem of classifying a new observation vector into one of the two known groups Πi,i=1,2, distributed as multivariate normal with common covariance matrix is considered. The total number of observation vectors from the two groups is, however, less than the dimension of the observation vectors. A sample-squared distance between the two groups, using Moore–Penrose inverse, is introduced. A classification rule based on the minimum distance is proposed to classify an observation vector into two or several groups. An expression for the error of misclassification when there are only two groups is derived for large p and n=O(pδ),0<δ<1.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 97, Issue 9, October 2006, Pages 2057-2070
Journal: Journal of Multivariate Analysis - Volume 97, Issue 9, October 2006, Pages 2057-2070