کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1147288 | 957573 | 2007 | 29 صفحه PDF | دانلود رایگان |

In this paper, we propose a new estimator for a kurtosis in a multivariate nonnormal linear regression model. Usually, an estimator is constructed from an arithmetic mean of the second power of the squared sample Mahalanobis distances between observations and their estimated values. The estimator gives an underestimation and has a large bias, even if the sample size is not small. We replace this squared distance with a transformed squared norm of the Studentized residual using a monotonic increasing function. Our proposed estimator is defined by an arithmetic mean of the second power of these squared transformed squared norms with a correction term and a tuning parameter. The correction term adjusts our estimator to an unbiased estimator under normality, and the tuning parameter controls the sizes of the squared norms of the residuals. The family of our estimators includes estimators based on ordinary least squares and predicted residuals. We verify that the bias of our new estimator is smaller than usual by constructing numerical experiments.
Journal: Journal of Multivariate Analysis - Volume 98, Issue 1, January 2007, Pages 1-29