کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1147341 957580 2006 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Who's afraid of reduced-rank parameterizations of multivariate models? Theory and example
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Who's afraid of reduced-rank parameterizations of multivariate models? Theory and example
چکیده انگلیسی

Reduced-rank restrictions can add useful parsimony to coefficient matrices of multivariate models, but their use is limited by the daunting complexity of the methods and their theory. The present work takes the easy road, focusing on unifying themes and simplified methods. For Gaussian and non-Gaussian (GLM, GAM, mixed normal, etc.) multivariate models, the present work gives a unified, explicit theory for the general asymptotic (normal) distribution of maximum likelihood estimators (MLE). MLE can be complex and computationally hard, but we show a strong asymptotic equivalence between MLE and a relatively simple minimum (Mahalanobis) distance estimator. The latter method yields particularly simple tests of rank, and we describe its asymptotic behavior in detail. We also examine the method's performance in simulation and via analytical and empirical examples.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 97, Issue 4, April 2006, Pages 925-945